Rademacher Complexity Bounds for Non-I.I.D. Processes
نویسندگان
چکیده
This paper presents the first Rademacher complexity-based error bounds for noni.i.d. settings, a generalization of similar existing bounds derived for the i.i.d. case. Our bounds hold in the scenario of dependent samples generated by a stationary β-mixing process, which is commonly adopted in many previous studies of noni.i.d. settings. They benefit from the crucial advantages of Rademacher complexity over other measures of the complexity of hypothesis classes. In particular, they are data-dependent and measure the complexity of a class of hypotheses based on the training sample. The empirical Rademacher complexity can be estimated from such finite samples and lead to tighter generalization bounds. We also present the first margin bounds for kernel-based classification in this non-i.i.d. setting and briefly study their convergence.
منابع مشابه
Generalization Bounds for Time Series Prediction with Non-stationary Processes
This paper presents the first generalization bounds for time series prediction with a non-stationary mixing stochastic process. We prove Rademacher complexity learning bounds for both average-path generalization with non-stationary β-mixing processes and path-dependent generalization with non-stationary φ-mixing processes. Our guarantees are expressed in terms of βor φ-mixing coefficients and a...
متن کاملRademacher complexity of stationary sequences
We show how to control the generalization error of time series models wherein past values of the outcome are used to predict future values. The results are based on a generalization of standard i.i.d. concentration inequalities to dependent data without the mixing assumptions common in the time series setting. Our proof and the result are simpler than previous analyses with dependent data or st...
متن کاملStability of cross-validation and minmax-optimal number of folds
In this paper, we analyze the properties of cross-validation from the perspective of the stability, that is, the difference between the training error and the error of the selected model applied to any other finite sample. In both the i.i.d. and non-i.i.d. cases, we derive the upper bounds of the one-round and average test error, referred to as the one-round/convoluted Rademacher-bounds, to qua...
متن کاملLearning with Missing Features
We introduce new online and batch algorithms that are robust to data with missing features, a situation that arises in many practical applications. In the online setup, we allow for the comparison hypothesis to change as a function of the subset of features that is observed on any given round, extending the standard setting where the comparison hypothesis is fixed throughout. In the batch setup...
متن کاملPermutational Rademacher Complexity - A New Complexity Measure for Transductive Learning
Abstract. Transductive learning considers situations when a learner observes m labelled training points and u unlabelled test points with the final goal of giving correct answers for the test points. This paper introduces a new complexity measure for transductive learning called Permutational Rademacher Complexity (PRC) and studies its properties. A novel symmetrization inequality is proved, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008